

SEKA

EXAERA E⁺

ONE FRAME - EVERY PATH

sekabikes.com

WHITE PAPER

TABLE OF CONTENTS

1. Objectives
2. Product Overview
3. Tire Clearance
4. Storage and Modularity
5. Aerodynamics
6. The WindEye Structure
7. Weight, Stiffness & Strength
8. Geometry
9. Gladius GR Integrated Handlebar

ExAero GR – WHITE PAPER – OBJECTIVES

OBJECTIVES

The ExAero GR was born to help riders travel faster over more complex terrain and deliver a winning edge in every gravel race.

Here, we present our guide to some of the world's most exciting gravel races for 2025.

Event	Course Description	Single day Distance, Elevation Gain	Calories Burned (est)	Initial Pace & Hydration Volume	Related Distance Regulations	Rules for Dealing with Mechanicals	Percentage of Disrupted Distances	Recommended Time Width	Men's 1st Place Avg. Speed (mph)	Men's 1st Place Total Time (hrs)	
Univ. Gravel 2021 (200)	Single day ultra-endurance riding events with a gentle slope gradient.	Distance ~125.7 Elevation Gain ~1,000	Approximately 6,000-10,000	Bottom of course: 12-14 Energy Gel 12-20	Two central and northern sections contain several narrow sections, necessitated results in disqualification times.	For major repairs, they must reach a designated aid station.	About 80%	10 hours	17.11	10.11 (2)	
Big Sur Ultra-Mile 2021 (100) (long distance)	Single day ultra-endurance riding events with a gentle slope gradient.	Distance ~113 Elevation Gain ~2,000	Approximately 6,000-10,000	Bottom of course: 10-17 Energy Gel 8-10	Up and downhills for self-supported.	For major repairs, they must reach a designated aid station or official event support vehicle (waiting time required).	Approximately 60% (8 hours)	14.8	10.11 (2)		
UC Gravel World 2021 (short dist.)	Single day ultra-endurance	Distance ~100 Elevation Gain ~1,000	Approximately 4,000-6,000	Bottom of course: 10-12 Energy Gel 6-12	Bottom loop course: 12 loops with one aid station per loop. Required to strictly prohibits self-service of disengaged and stationary.	For major repairs, they must reach a designated aid station.	Approximately 40% (6 hours)	18.75	10.11 (2)		
Migration Gravel Race Legrand 2021 (full distance)	Single day ultra-endurance 5 days	Distance ~125-130 Elevation Gain ~1,000	Single day Approximately between 3000 and 5000	Single day Bottom of course: 12-18 Energy Gel 8-22	Two water stations, self-supported fuel.	For major repairs, they must reach a designated aid station. External assistance is permitted, but only with the rider's consent.	About 80%	10 hours	13.0 (disengaged, self-supported)	10.11 (2) (disengaged, self-supported)	
"The Winning Formula"		High safety and simple setup, low disassembly, and significant cumulative distance		Long range fuel stored centrally early, rapidly for example		A higher percentage of mechanical failures		Significant variation in optimal tire width choices		High energy inputs and long finish times, where the cumulative effects of small gains is enhanced	
Exceptional software and compliance		Simple Storage Modularity & Capacity		Cross-feeding Tire Clearance		Optimized tire performance					

PRODUCT OVERVIEW

Lightweight: 980g

True monocoque frame construction
980g frame weight
(T1100 reinforced by MAG)

Exceptional Rear Shock Absorption:

The WindEye structure:

106N/mm vertical compliance

ExAero Mag Bottle System:
(Compared to standard round bottle)

A single zero bottle saves **5.7W**

Dual zero bottle saves **4.6W**

Cloudless GR Integrated Handlebar:

15 sizes

16° of flare for gravel riding

Tire Clearance:

Front: **56mm**

Rear: **52mm**

Geometry:

Q-size: Optimized for agility and confidence inspiring handling.

TIRE CLEARANCE

Tire Width Range	Aerodynamics Performance	Rolling Resistance (Flat Packed Form)	Rolling Resistance (Lower Inflated, Hard)	Comfort	Grip	Handling & Stability	Events & Corresponding Courses and Surfaces
35-40mm	★★★★★	★★★★★	★★★★★	★★★★★	★★★★★	★★★★★	UCI Gravel Worlds, BIR, Strade Bianche, High-speed, Gravel mixed with paved sections.
40-45mm	★★★★★	★★★★★	★★★★★	★★★★★	★★★★★	★★★★★	Gravelo, SWRCA, Short to Medium distance Mixed gravel and hard packed dirt road
45-50mm	★★★★★	★★★★★	★★★★★	★★★★★	★★★★★	★★★★★	Unbound Gravel, Migration, Gravel Earth, Taka Long distance, Rough and chunky gravel roads with film
50-56mm (≈ 2.2 inch)	★★★★★	★★★★★	★★★★★	★★★★★	★★★★★	★★★★★	TransRockies, Migration Mixed gravel, hard packed dirt road, rocky and muddy conditions with technical sections.

Tire selection is one of the most critical factors affecting Gravel race performance.

As shown in the table, different tire widths vary significantly in aerodynamic efficiency, rolling resistance, comfort, and stability:

35-40mm Optimized for speed on mixed surfaces with significant pavement;
 45-50mm The balanced choice for long-distance compliance and control on rough gravel;
 50-56mm Built for extreme conditions, prioritizing traction and puncture protection.

A well-chosen tire width balances aerodynamics, grip, and handling for optimal performance.

The ideal width is not a fixed value but should be tuned to specific course conditions.

The ExAero GR accommodates this need with maximum tire clearances of **56mm (front)** and **52mm (rear)**, giving riders the freedom to choose the optimal setup for any race or terrain.

STORAGE AND MODULARITY

Down Tube Integrated Internal Storage Compartment

In long-distance gravel races, riders typically need to carry 0.8–1.5L of nutrition, tools, and emergency gear. While traditional external storage solutions offer sufficient capacity, they often create significant aerodynamic drag.

Wind tunnel and CFD data indicate that a 1L externally mounted saddlebag increases the effective frontal area (ΔC_{dA}) by approximately **0.003m²**.

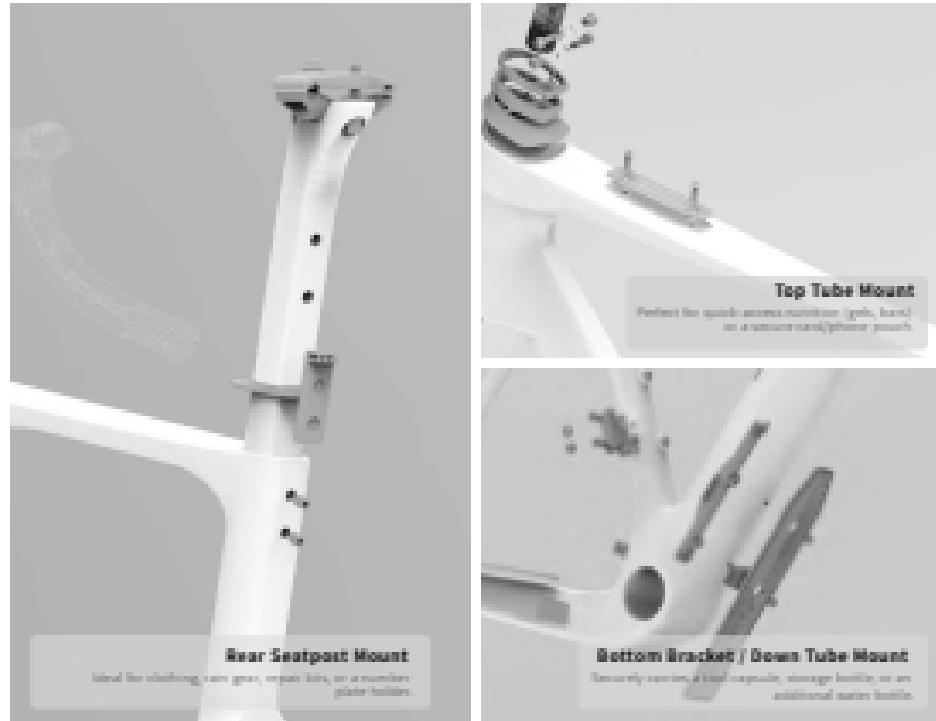
The resulting power loss can be calculated using the following equation:
$$\Delta P = 1/2 \cdot \rho \cdot \Delta C_{dA} \cdot v_{air}^2$$

Values:
 ρ (Air density) = 1.203kg/m³,
 ΔC_{dA} (Increase in effective frontal area) = 0.003m²,
 v_{air} (Bicycle speed) = 35km/h = 15.51m/s.

Calculation conditions:
Total mass: 81kg, Rolling resistance coefficient (C_r) = 0.004,
Resistance airspeed = 0.005m/s

Substituting these values gives:

$$\Delta P = 2.5W$$

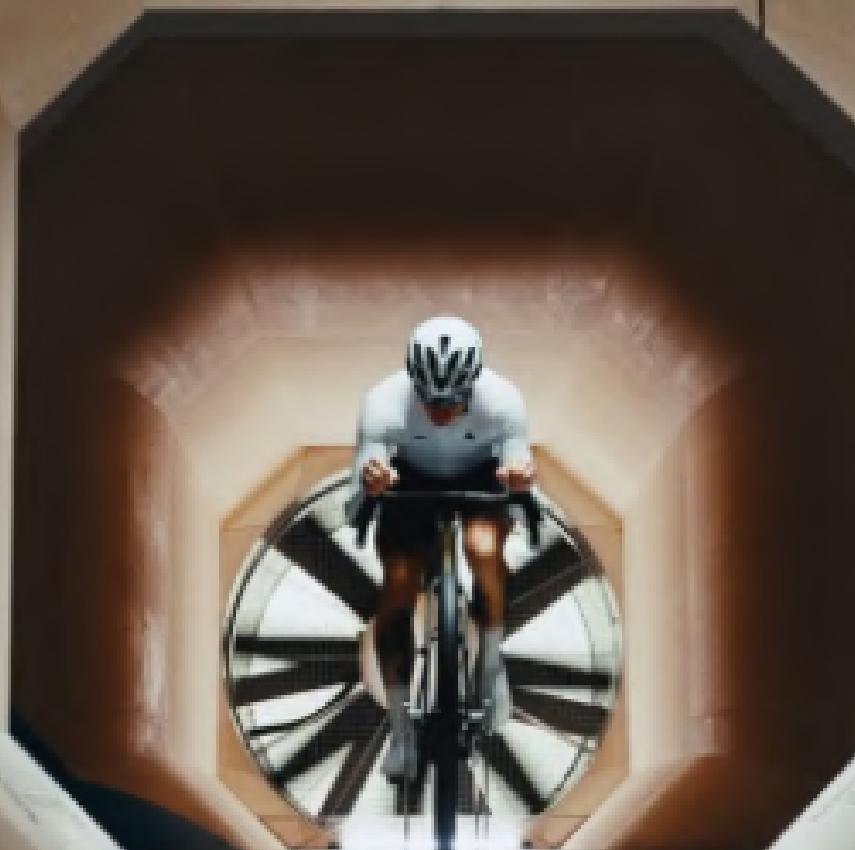

This 2.5W power loss corresponds to approximately 0.3% reduction in speed under a constant power output, culminating in a time loss of roughly **20 seconds** over an 80 km course.

The ExAero GR features a fully integrated down-tube storage compartment, engineered to securely hold essentials like spare tubes, CO₂ cartridges, and tools. Its design achieves an optimal aerodynamic form without compromising storage capacity.

The compartment utilizes a Fidlock magnetic latch, ensuring a seamless, secure, and clean interface that performs reliably in all racing conditions.

For further versatility, the frame includes modular mounting interfaces on the down tube, top tube, and seatpost. This comprehensive system allows riders to tailor their setup based on race distance, nutrition needs, and preference—or run a clean, ultra-lightweight configuration when extra cargo isn't needed.

By seamlessly integrating storage and expansion, the ExAero GR delivers an unprecedented balance of aerodynamics, weight, and versatility, offering a more complete solution than any other racing gravel platform.



AERODYNAMICS

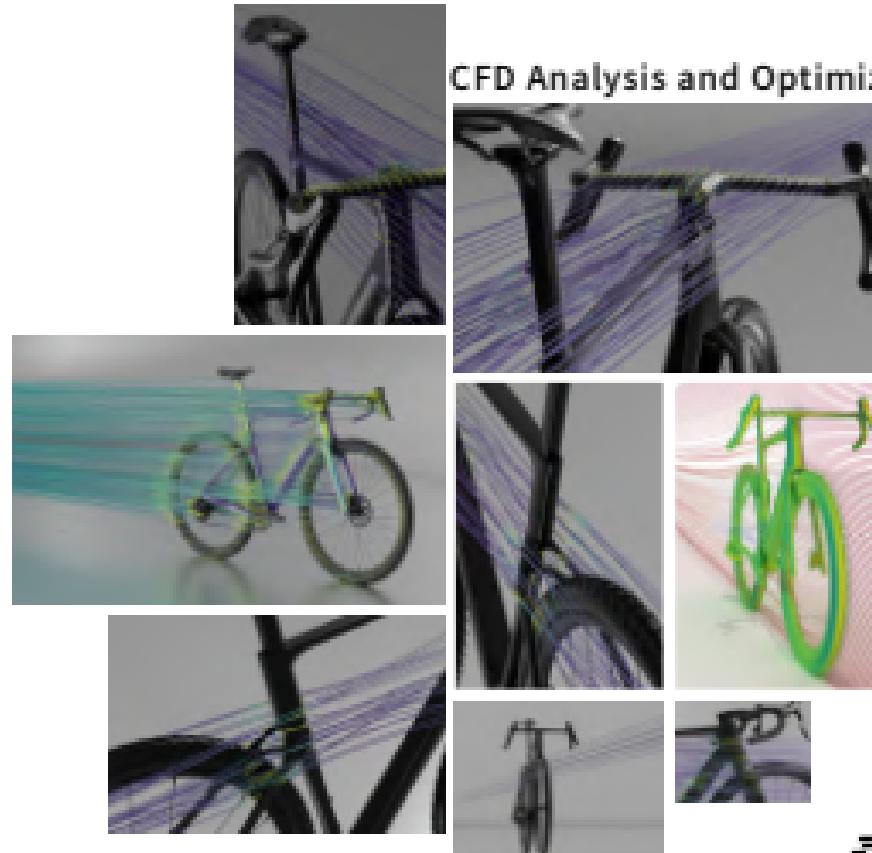
A gravel bike must master diverse terrains without compromising on speed and racing performance.

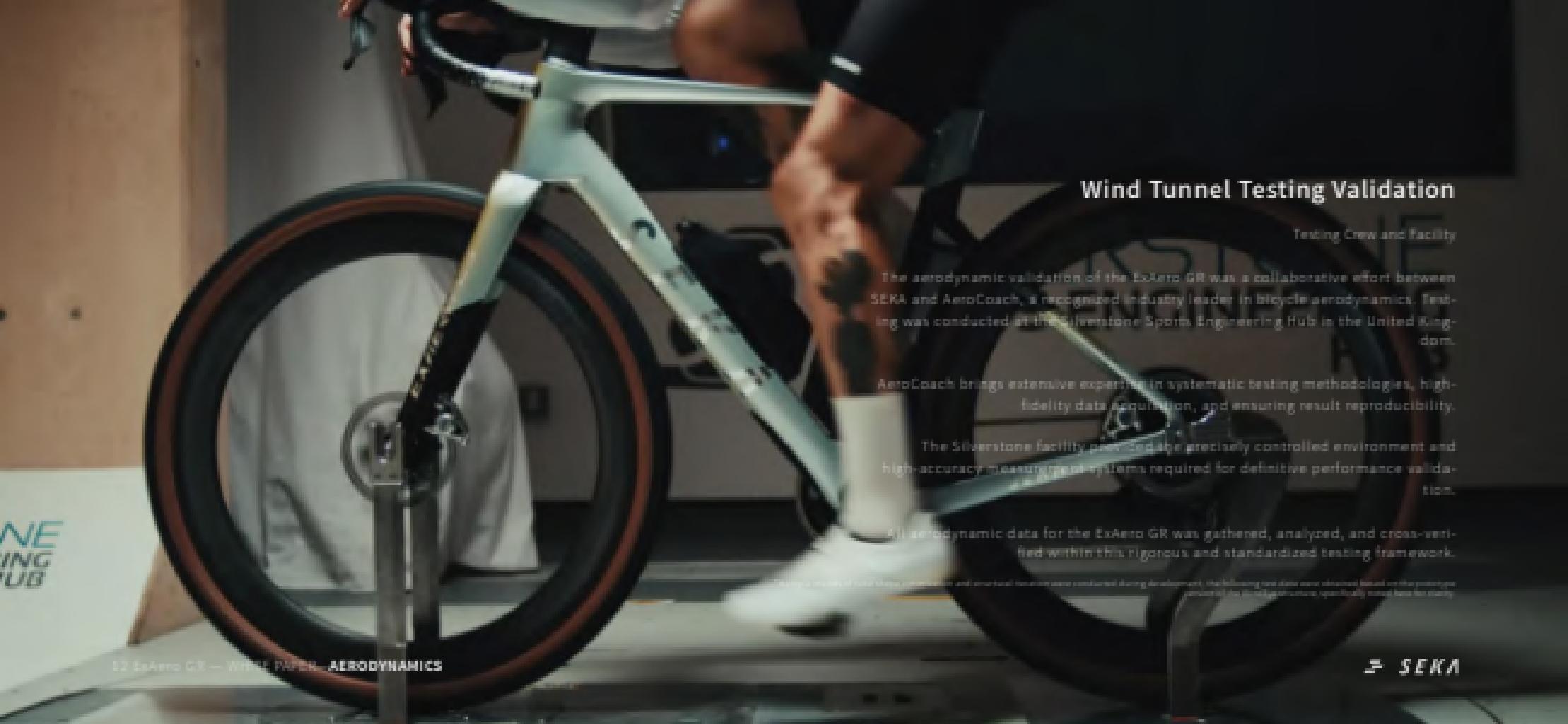
When it comes to a frame's racing performance, no factor is more critical than aerodynamic efficiency.

Our philosophy therefore focuses on the complete system's aerodynamics in a real-world racing configuration. We optimize not just the frame's drag coefficient, but the entire ecosystem: frame geometry, tire clearance, integrated storage, and modular expansion systems.

CFD (Computational Fluid Dynamics) served as the core development tool in the early stages of the ExAero GR project. It enabled the analysis of airflow characteristics and pressure distribution around the frame prior to wind tunnel testing.

Throughout this process, we conducted multiple rounds of numerical analysis and localized geometric refinements under standardized boundary conditions. The focus was on optimizing tube cross-sections, transitional zones, and rear wake structures to enhance flow continuity and minimize energy loss across the entire frame.


During the Computational Fluid Dynamics (CFD) analysis of the complete ExAero GR prototype, the primary focus areas were:


1. **Frontal Area Optimization:** Analyzing and improving airflow pattern around the integrated handlebar, head tube, and fork;
2. **Overall Flow Field Management:** Optimizing the complete bike's airflow and pressure distribution;
3. **Wake Control:** Evaluating and refining the "Windtyle" structure's ability to manage wake behavior;
4. **Component Analysis:** Simulating the aerodynamic drag difference between aero bottles and standard round water bottles.

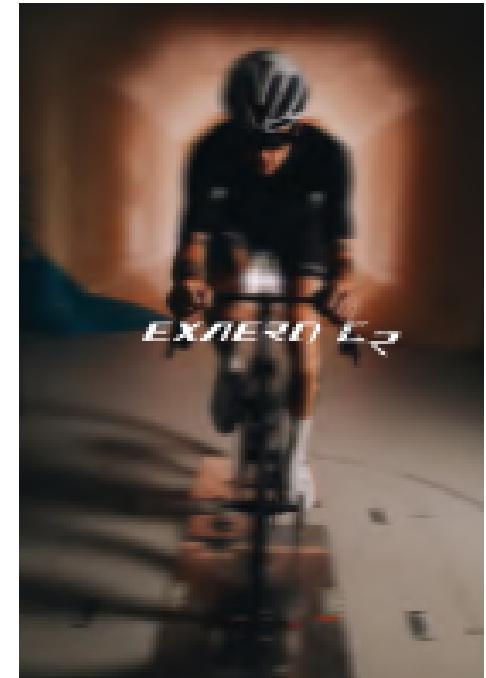
Through multiple iterative cycles of CFD analysis, we established the core aerodynamic design direction and key structural features of the ExAero GR.

Subsequent wind tunnel testing validated these CFD predictions and provided precise quantification of the final product's real-world aerodynamic performance.

CFD Analysis and Optimization

Wind Tunnel Testing Validation

Testing Crew and Facility


The aerodynamic validation of the ExAero GR was a collaborative effort between SEKA and AeroCoach, a recognized industry leader in bicycle aerodynamics. Testing was conducted at the Silverstone Sports Engineering Hub in the United Kingdom.

AeroCoach brings extensive expertise in systematic testing methodologies, high-fidelity data acquisition, and ensuring result reproducibility.

The Silverstone facility provides a highly controlled environment and high-accuracy measurement systems required for definitive performance validation.

All aerodynamic data for the ExAero GR was gathered, analyzed, and cross-verified within this rigorous and standardized testing framework.

Initial rounds of data collection and analysis were conducted during development, with following test data were obtained based on the prototype. The final validation data was collected during the final development phase, specifically针对风洞测试.

SEKA

ExAero GR: Wind Tunnel Aerodynamic Data Validation (A joint study conducted by SEKA and AeroCoach)

Test Objekte

To validate the aerodynamic performance of the ExAero GR prototype, following CFD optimization, under controlled wind tunnel conditions.

Through wind tunnel testing and application of the Barry (2018) weighted averaging method, the ExAero GR was validated with a CdA of **0.3938m²**.

This result closely aligns with the aerodynamic targets set during the CFD simulation and optimization phase, confirming the efficacy and accuracy of our virtual design process in real-world conditions.

To contextualize this **CdA value of 0.3938m²**, we conducted a comparative wind tunnel test under identical conditions, using SEKA's **Spear** road model as a benchmark.

Yaw angle	Weighting function (Barry 2018)	ExAero GR Front-tubeless Rear-tubeless	Spear
-30	0.09	0.39716.0058	0.39580.1672
-17.5	0.152	0.394927.198	0.391587.020
-5	0.237	0.395209.262	0.391294.026
12.5	0.377	0.391652.237	0.344500.0242
30	0.542	0.397002.004	0.399999.0272
37.5	0.683	0.393962.0080	0.342334.017
45	0.857	0.397634.1175	0.327930.0189
1.5	0.962	0.370310.0263	0.364627.0253
0	1	0.380000.0267	0.380137.0270
1.5	0.962	0.372041.1709	0.364349.0231
5	0.857	0.391102.1775	0.319652.0206
7.5	0.683	0.394637.4208	0.354361.0244
10	0.542	0.394626.6273	0.302379.7164
12.5	0.377	0.394927.6228	0.345639.0213
15	0.237	0.394628.8236	0.392162.1758
17.5	0.152	0.395902.0013	0.361542.0064
30	0.09	0.397002.0004	0.395492.0197
Weighting	0.748	0.393825.0000	0.393879.0000

The weighted yaw angle parameters were defined according to the Barry (2018) standard.

Wind tunnel testing was validated by comparing results from 15 yaw angles with those from a related human body measurement.

The SEKA Spear represents a benchmark for aerodynamic efficiency in road racing, while the ExAero GR is engineered as a competitive, aerodynamically-optimized gravel platform. This comparative test aims to quantify the aerodynamic performance gap between a dedicated gravel bike and an aero road bike, providing a clear and intuitive reference.

Given their distinct purposes, the bikes were tested in their typical real-world configurations. The specific setup differences between the ExAero GR and the Spear are detailed below:

Frame model	Size	Wheelset	Tires	Integrated Handlebar	Groupset	Water Bottle	Rider, Kit, and Bike Total Mass
ExAero GR	54	Zipp 303 XPLR SW	Schwalbe G-One RS Pro, 745mm, 345mm	Glacier GR 400-110	Shimano Red XPLR	ExAero Mag bottle "2	85.8KG
Spear	M	Zipp 404 Firecrest	Pirelli Pzero 28C	Rapier 355-100	Shimano Dura-ace	500ml round bottle "2 (using base mountage)	81.8KG

Apart from the model-specific configurations for the ExAero GR and Spear, all other test parameters—including environmental conditions and measurement procedures—were held constant.

The wind tunnel test measured the Spear's CdA at **0.3820m²**. This results in a CdA difference (ΔCdA) of **0.0118m²** between the two models under their optimal, real world setups.

Based on this ΔCdA , the aerodynamic power difference between the two bikes was calculated as follows:

$$\Delta P = 1/2 \cdot \rho \cdot \Delta \text{CdA} \cdot v_{\text{air}}^2$$

The test results confirm that the ExAero GR requires approximately **3.5W** more aerodynamic power than the Spear, which aligns with expectations given their distinct design purposes.

This difference is primarily attributed to the ExAero GR's wheelset and tire configuration. The combination of wider tires and larger-section rims accounts for roughly **10W** of additional aerodynamic drag.

Furthermore, the comparison underscores a key advantage of the ExAero GR: its integrated storage. To match the capacity of the ExAero GR's down-tube compartment, the Spear would require an external saddle bag, which we previously estimated would induce an aerodynamic penalty of approximately **3.5W**.

Parameter Description:
 ρ Air Density: $1 \pm 1.25 \text{kg/m}^3$,
 ΔCdA (CdA difference) = 0.0118m^2 ,
 v_{air} (Relative speed) = $35 \text{mph} \pm 11.11 \text{m/s}$.

Note:
Due to variations in the wind and flow pattern across, broadly, the power difference between the gravel and aero road is typical, by half a watt $\pm 0.110 \text{W}$ range.
The subtle differences in reach and reach resulting from the frame geometry must be compensated for by adjusting the position of the handlebars.

Wind Tunnel Testing: The Aerodynamic Impact of Tire Width

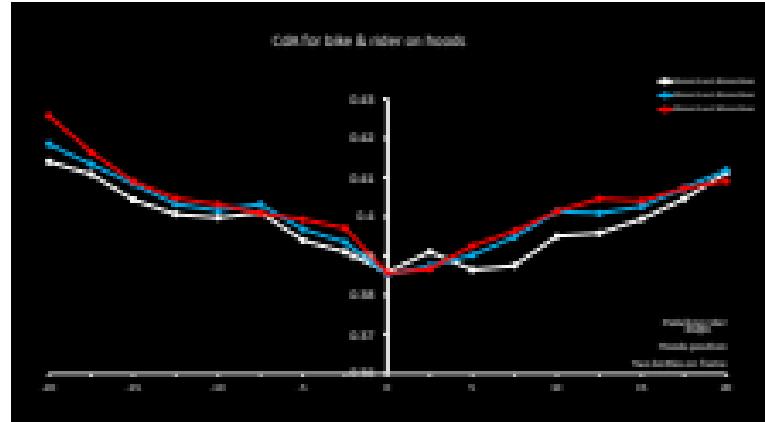
Tire selection is one of the most critical performance factors in gravel racing.

Characteristics like size, pressure, and casing structure collectively influence a bike's aerodynamics, rolling resistance, handling stability, compliance, and puncture resistance.

A clear industry trend has seen gravel tire widths evolve from 35mm to 45mm, 50mm, and beyond, as riders recognize the superior control, comfort, and rolling performance wider tires provide on rough terrain. However, quantitative data on the aerodynamic cost of this increased width has remained limited.

To address this, we conducted controlled wind tunnel tests on key tire-width configurations. Our goal was to obtain definitive data, quantify the aerodynamic trade-offs, and provide riders with actionable insights for selecting the optimal tire.

The results are presented below:


Tire Width Configuration	Front Tire Width	Rear Tire Width	CDA	Δ CDA
A	45mm	45mm	0.3938	0
B	50mm	45mm	0.3962	0.0024
C	50mm	50mm	0.3974	0.0036

Wind Tunnel Test Environment
• Air Density = 1.225 kg/m³
• Air Velocity Request = 30m/s ± 1%
• Air Velocity Measured = 30m/s ± 1%

All parameters except for tire width configurations... including rider position, bike fit (reach/stand), wheelset, and handlebar/steering configuration... were held constant.

Wheel angle	Weighting function (approx.)	Front Wheel Rear Wheel ax	Front Wheel Rear Wheel ax	Front Wheel Rear Wheel ax
0°	0.09	0.03720000	0.03720000	0.03720000
-17.5°	0.158	0.03897100	0.03897100	0.03897100
-15°	0.207	0.03942000	0.03942000	0.03942000
-12.5°	0.257	0.03952000	0.03952000	0.03952000
-10°	0.303	0.03940000	0.03940000	0.03940000
-7.5°	0.343	0.03910000	0.03910000	0.03910000
-5°	0.377	0.03860000	0.03860000	0.03860000
-2.5°	0.403	0.03800000	0.03800000	0.03800000
0°	1	0.03720000	0.03720000	0.03720000
2.5°	0.403	0.03800000	0.03800000	0.03800000
5°	0.377	0.03860000	0.03860000	0.03860000
7.5°	0.343	0.03910000	0.03910000	0.03910000
10°	0.303	0.03940000	0.03940000	0.03940000
12.5°	0.257	0.03952000	0.03952000	0.03952000
15°	0.207	0.03942000	0.03942000	0.03942000
17.5°	0.158	0.03897100	0.03897100	0.03897100
20°	0.09	0.03720000	0.03720000	0.03720000
Weighting	0.748	0.03895100	0.03895100	0.03895100

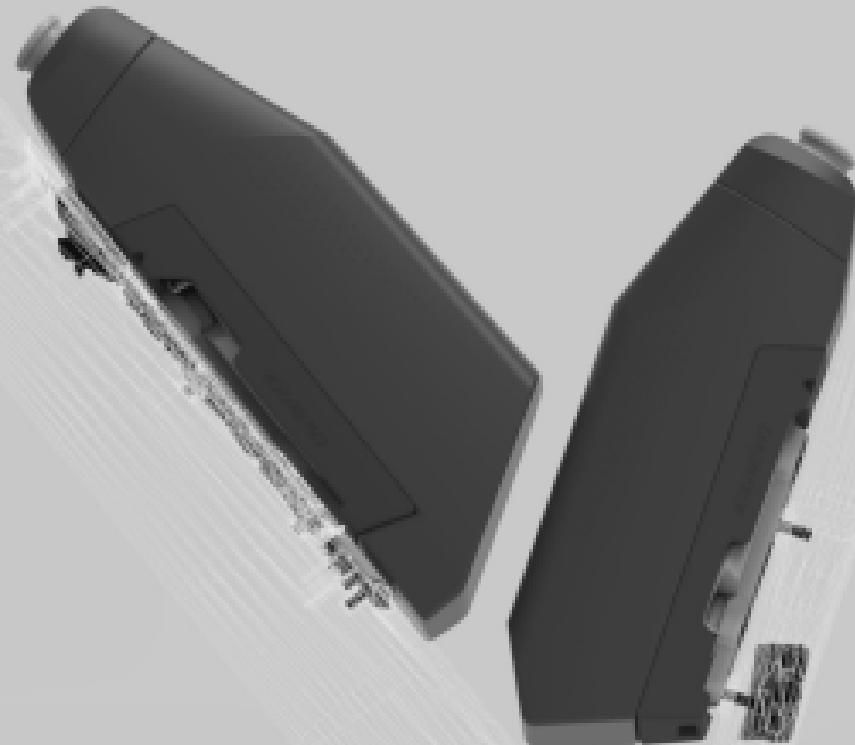
The assigned yaw angle parameters were defined according to the Barry (2018) standard.

Test Results & Analysis

Under identical speed conditions, the test results reveal minimal differences in CdA and aerodynamic power across the three tire widths, with a maximum variation of **less than 2.5%**. This indicates that tire width has a relatively limited impact on overall aerodynamics within this specific performance envelope.

Notably, at a 0° yaw angle, the aerodynamic performance of all three setups was nearly identical.

(Note: The presented differences in tire shape or higher test speeds could increase this aerodynamic variance.)



The primary advantages of different tire widths lie in their terrain-specific performance:

Narrower Tires: Excel on hard-packed or paved surfaces, offering superior aerodynamic efficiency and lower rolling resistance.

Wider Tires: Provide enhanced grip, stability, puncture protection, and compliance on loose gravel or clay terrain.

Designed with maximum clearances of up to 50mm, the ExAero GT offers riders broad compatibility and flexible setup options, empowering them to select the optimal tire for any race or terrain.

Aerodynamic Comparison: ExAero Mag Bottles vs. Round Bottles

To further optimize the ExAero G1's aerodynamic performance, we developed a **proprietary magnetic aero water bottle system**. We conducted independent wind tunnel testing to quantify their impact on the bike's overall CdA compared to standard round water bottles. The results demonstrate a clear aerodynamic advantage for the ExAero Mag aero bottles design.

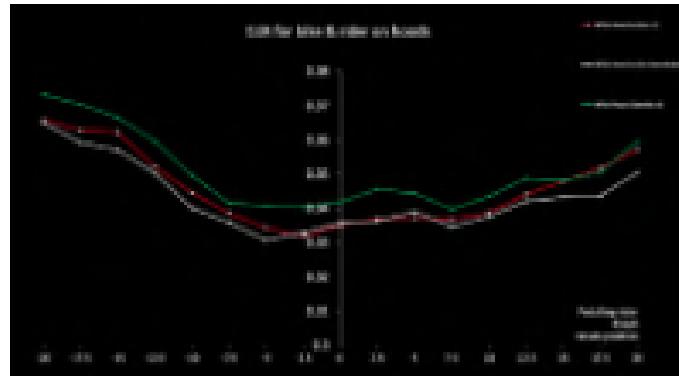
Bottle Setup	CdA	Δ CdA
Round bottle*1	0.3457	0
ExAero Mag bottle*1	0.3383	-0.0074
ExAero Mag bottle*2	0.3398	-0.0059

Wind Tunnel Test Environment

- Air Density = 1.225 kg/m³
- Air Velocity (downwind) = 30 mph = 13.44 m/s

All parameters, except for the water bottle configuration, including riding position, bike fit (reach/stanch, aero bars, stem, and saddle... were held constant.

Test Configuration


The baseline CdA value of 0.3457 was measured in this test is not directly comparable to the 0.3500*1 from previous sections, as the overall bike configuration differs.

However, this does not affect the validity of the bottle comparison. The objective from was to isolate the effect of the bottle type (all other vars. either were held constant, making the measured difference... a ~0.0074* CdA reduction with aero bottles... a reliable result.

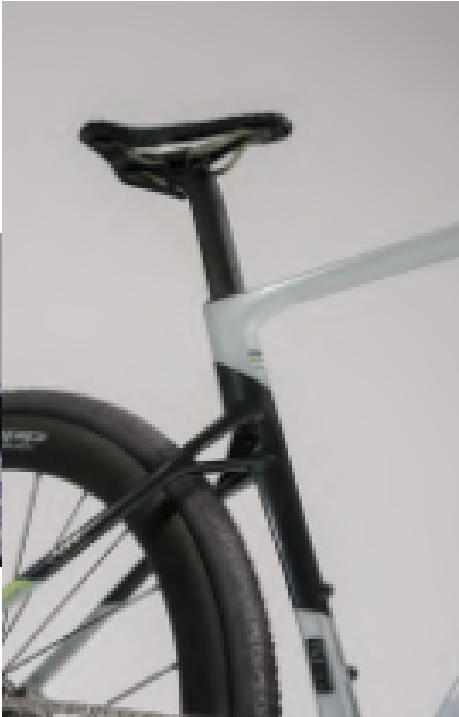
Yaw angle	Weighting (aero drag)	Balance Mag '21	Balance Mag '22	Round Bottles '21 (aero drag coefficient)
0.00	0.000	0.00000000	0.00000000	0.00000000
-17.5	0.150	0.00732363	0.00677154	0.00681274
-15	0.300	0.00664201	0.00662476	0.00662476
-12.5	0.377	0.00738680	0.00730463	0.00730463
-10	0.400	0.00711100	0.00686000	0.00686000
-7.5	0.380	0.00633000	0.00611000	0.00611000
-5	0.287	0.00601200	0.00580000	0.00580000
-2.5	0.180	0.00598200	0.00587200	0.00587200
0	1	0.00582700	0.00576000	0.00576000
2.5	0.080	0.00575100	0.00568000	0.00568000
5	0.037	0.00560200	0.00553000	0.00553000
7.5	0.030	0.00550000	0.00543000	0.00543000
10	0.020	0.00540000	0.00533000	0.00533000
12.5	0.017	0.00530000	0.00523000	0.00523000
15	0.015	0.00520000	0.00513000	0.00513000
17.5	0.014	0.00510000	0.00500000	0.00500000
20	0.006	0.00500000	0.00490000	0.00490000
Weighting	0.700	0.006830247	0.006373482	0.006754683

The assigned yaw angle parameters were defined according to the Kenny (2008) standard.

Relative Airspeed	Round Bottles '21 (aero drag coefficient)	Balance Mag '21	Balance Mag '22
45km/h	DW	-6.5W	-6.7W
35km/h	DW	-4.5W	-5.7W

The test results confirm that the bottle system plays a critical role in the bike's overall aerodynamics. Across all test scenarios, the aero bottles consistently outperformed standard round bottles in aerodynamic efficiency.

This aerodynamic advantage stems from a co-optimized design between the aero bottle and the down tube's cross-sectional profile. The bottle's streamlined shape reduces the turbulent wake area, thereby minimizing localized pressure drag.

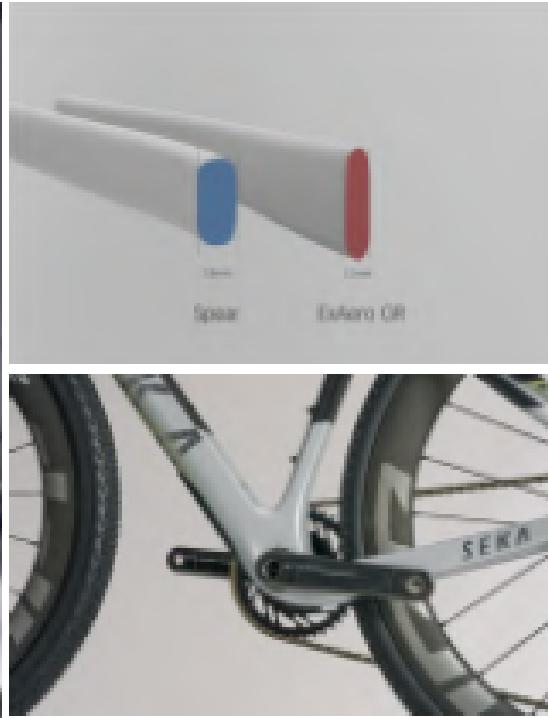
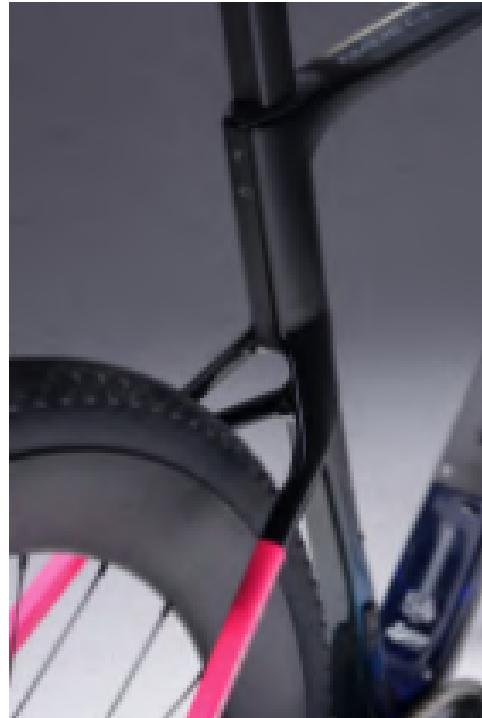

This test was conducted using the second prototype of the Balance Mag bottle system.

Review Methodology:

This analysis is based on theoretical modeling.

Under the assumption of an ideal fluid, the CdL is treated as constant with respect to fluid viscosity.

The CdL value was measured in the wind tunnel at 45km/h. This same value was applied with the power equation to calculate the theoretical power demand at a riding speed of 35km/h.



W
I
N
D
E
Y
E

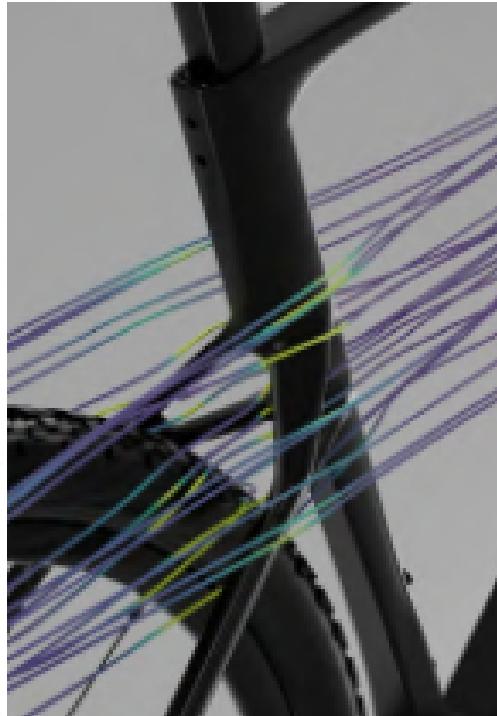
THE WINDEYE STRUCTURE

The WindEye structure creates a functional zone between the seatstays and seat tube that combines air deflection with vertical compliance.

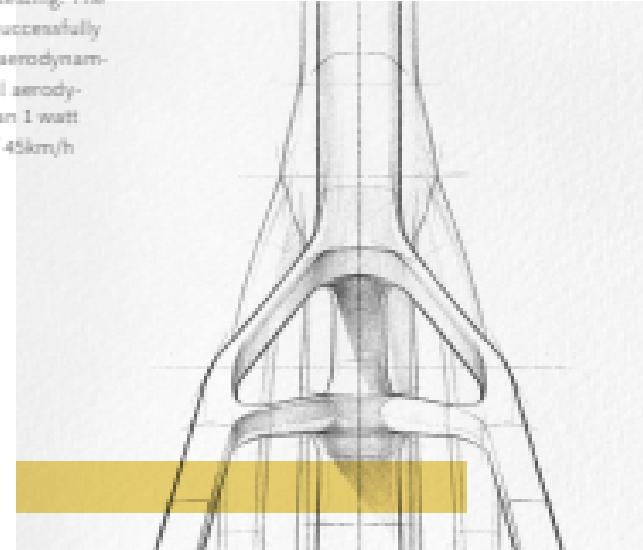
This design enables smoother airflow while allowing controlled rear-end flex to absorb road vibrations—delivering both aerodynamic and compliance advantages that have been validated through wind tunnel testing and feedback from thousands of Specialized riders.

For the ExoAero GR, the WindEye structure was redesigned and refined to meet the specific demands of gravel riding.

The rear triangle lateral stiffness test was conducted following UCI 2022-2, Section 4.1 ("Lateral bending test of the frame").


Test Item	Prototype A	Prototype B	SEKA GR
Tensile Load	350kg (~25mm)	350kg (~25mm)	350kg (~25mm)
Lateral Deformation (mm)	13.47mm	11.8mm	11.47mm
Lateral Stiffness (N/mm)	21.824/N/mm	26.725/N/mm	26.633/N/mm

To accommodate a maximum rear tire clearance of 52mm and maintain compatibility with dual-chainring systems, the ExAero GR introduces tighter spatial constraints on the drivetrain side.


This is most apparent in the chainstay profile, which measures just **11mm** at its thinnest point. This geometric necessity inevitably impacts rear-triangle lateral stiffness. To counter this, we performed targeted structural optimizations, refining the WindEye structure to enhance rear triangle **lateral stiffness** without compromising the clearance or drivetrain compatibility.

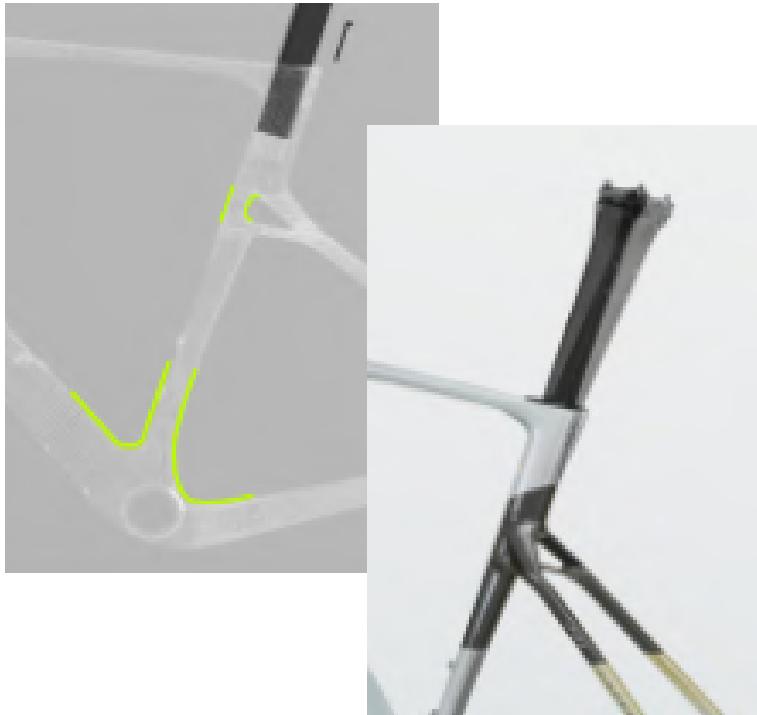
Specifically, the upper and lower connecting plates of the WindEye were thickened through multiple design iterations to provide increased lateral support. This refinement ensures efficient power transfer and meets the rigidity demands of competitive gravel riding.

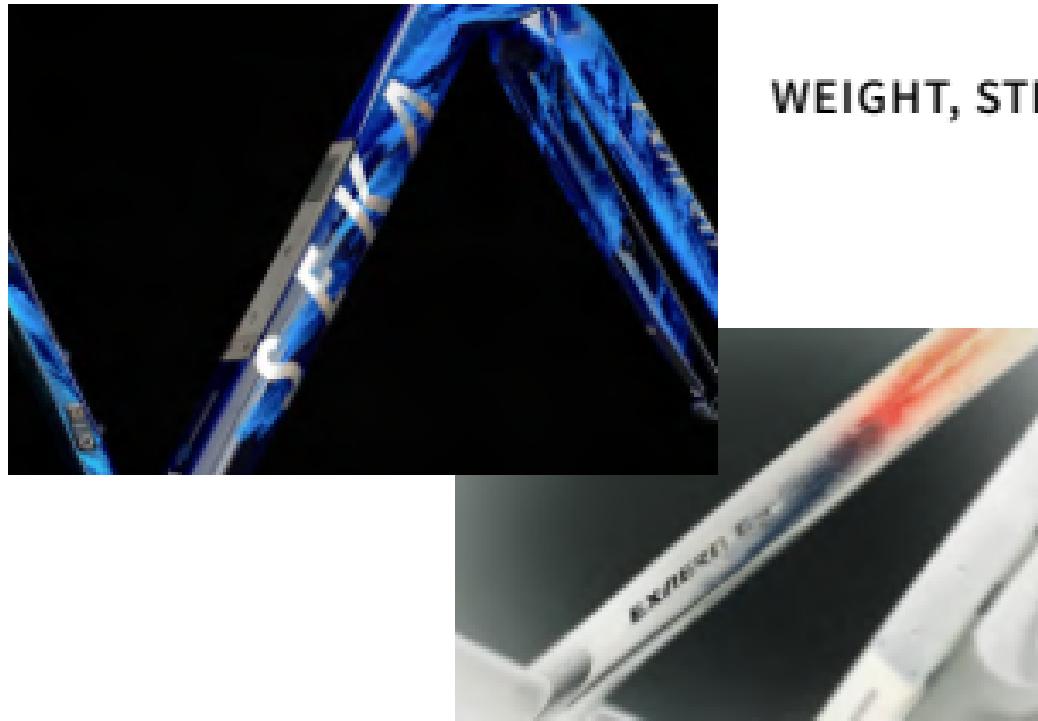
Validation tests confirm the success of this approach: the final ExAero GR achieves a rear-triangle lateral stiffness of **26.63N/mm**, a figure that is generally consistent with, and even shows a slight improvement over, the benchmark **SEKA Spear**.

This design was validated through both CFD analysis and wind tunnel testing. The optimized WindEye structure successfully balances lateral stiffness with aerodynamic efficiency, resulting in a total aerodynamic drag increase of less than 1 watt under a relative wind speed of 45km/h and a $\pm 30^\circ$ yaw range.

The three-dimensional space formed by the WindEye's upper and lower connecting plates functions as an **"airflow diffuser"**. This design optimizes the turbulent wake and reduces the low-pressure zone behind the seat tube, allowing turbulent airflow generated during riding to pass through this area more efficiently.

To preserve this aerodynamic performance after the structural reinforcement, we performed multiple rounds of CFD optimization on the connecting plates' **cross sectional profiles and angles**.


Following the reinforcement of the WindEye's upper and lower connecting plates, we strategically reduced the wall thickness at the junction of the seat tube and the WindEye structure and incorporated a slimmer profile at the seat tube's lower section.


This achieves a more uniform vertical compliance profile.

This targeted approach of **reinforcement and strategic material reduction** achieves a more balanced stress distribution. The result is a significant enhancement in lateral stiffness for efficient power transfer, without compromising the vertical compliance essential for comfort.

Validating this design, the ExAero GR's rear triangle demonstrates a vertical compliance of 104N/mm.

For the demanding conditions of long-distance, rough gravel races, the WindEye structure significantly enhances riding comfort, helping riders finish faster.

WEIGHT, STIFFNESS & STRENGTH

Lightweight design remains a paramount concern in SEKA's philosophy, but never at the cost of overall performance.

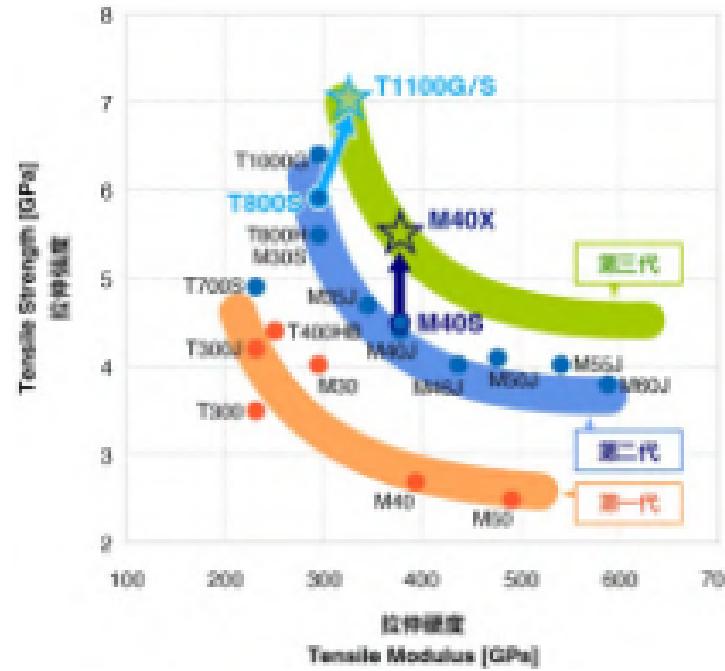
For a performance gravel frame built to conquer demanding terrain, we prioritize a robust structure with high stiffness and impact resistance—ensuring exceptional strength and durability without compromise.

To achieve this optimal balance, we conducted extensive validation of materials, carbon layup, and manufacturing processes. After passing fundamental ISO 4210 and ASTM Condition 3 tests, we further elevated our targets for frame stiffness and impact strength.

Through successive iterations—with frame weight evolving from 900g to 750g, and finally to 680g—we systematically reinforced critical stress zones.

The result is the ExAero GR: a size 54 frame (metal parts and paint excluded) with a final weight of **680g**.

This figure represents the optimal equilibrium between lightweight performance and high impact strength, achieved through rigorous optimization and testing.


Reinforcement Strategy Based on PAN-Based Carbon Fibers

Unlike the ultra-high-modulus, pitch-based 65T/80T carbon fibers typically used in road bike development, the ExAero GR utilizes **TORAYCA® T1100G** and **TORAYCA® M46J** as its primary reinforcement materials. This is not a simple material substitution, but a deliberate structural optimization strategy focused on achieving superior mechanical balance.

Compared to pitch-based fibers, the PAN-based **T1100G** and **M46J** offer significantly higher tensile strength and fracture toughness. This enables the frame to maintain a high stiffness-to-weight ratio while substantially improving impact resistance and energy absorption capacity.

This material approach allows the ExAero GR to withstand gravel impacts, vibrations, and shock loads while **preserving** exceptional structural integrity and fatigue life.

While the T1100G and M46J solution entails a marginal weight increase compared to pitch-based fibers, the superior balance of stiffness, strength, and toughness it delivers in competitive off-road environments is far more valuable than mere gram shaving.

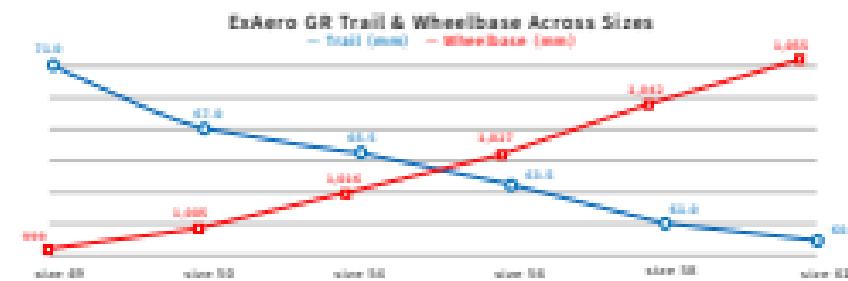
True One-Piece Monocoque Struc- ture

Compared to multi-section molding or tube-to-tube bonding, the core advantage of the monocoque process is **its continuous load path**. It allows the carbon fiber to perform at its full potential.

This structural approach delivers superior overall stiffness and power-transfer efficiency while **significantly enhancing impact resistance and fatigue life**. This forms the foundation of the ExAero GR's exceptional strength, durability, and long-term reliability.

Frame Geometry & Height Size Chart

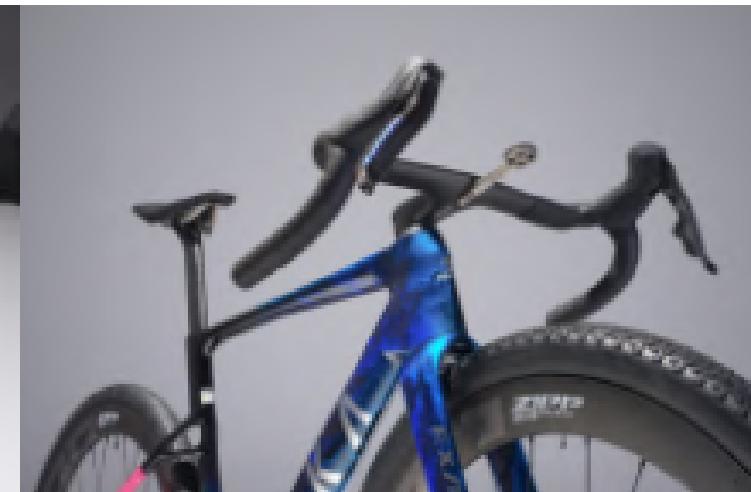
Size	Stack Reach Trail										C	Head tube angle	Fork offset	Bottom bracket drop	Chainstays	Wheelbase	Saddle height
	CS	BC	H	PC	WB	L	W	QF	QT	R							
46	524	369	70	466	423	74	567	309	364	398	764	79	38	403	227	198-202	491-504-516-526
48	540	375	67	469	423	74	569	305	363	398	760	76	34	403	223	198-202	494-506-518-528
50	556	381	65	473	423	72	565	303	362	396	756	74	30	403	220	198-202	496-508-520-530
52	572	387	63	476	423	72	567	302	362	395	752	74	26	403	217	198-202	498-509-521-531
54	588	393	61	479	423	72	569	301	361	394	748	74	22	403	214	198-202	500-510-522-532
56	604	400	59	482	423	72	571	300	360	393	744	74	18	403	211	198-202	502-512-524-534
58	620	406	57	485	423	72	573	299	359	392	740	74	14	403	208	198-202	504-514-526-536
60	636	412	55	488	423	72	575	298	358	391	736	74	10	403	205	198-202	506-516-528-538


Geometry

The ExAero GR's geometry is engineered to strike an optimal balance between agile handling and confident stability on rough or loose terrain.

Key to this balance is a carefully calibrated **trail figure of 71-80mm** (based on a 350mm wheel radius), which ensures direct steering feedback and predictable control during rapid line changes.

This is complemented by a **74-78mm bottom bracket drop** and **423mm chainstays**. Working in concert with a wheelbase optimized for trail balance, these dimensions deliver both sharp acceleration response and unflappable composure.


To fine-tune the fit, the ExAero GR is available in 8 frame sizes and offers 15 handlebar (integrated) sizes and two seatpost offsets (0mm / 15mm setback).

*Values shown are for a dimension width, frame thickness and trail can vary with different size widths, and positions.

Gladius GR

INTEGRATED HANDLEBAR

The Gladius GR is an integrated handlebar system engineered specifically for the ExAero GR. With **15 combinations** of stem length and handlebar width, it provides a precise fit for riders of all proportions and riding styles.

The drops feature a **15° outward flare** on each side, which optimizes wrist ergonomics for comfort while significantly enhancing control and stability on technical terrain.

A slight **backsweep** design increases the forward reach space.

Furthermore, the top section incorporates a **micro-textured, anti-slip surface**. This ensures a secure grip in wet conditions or on rough surfaces, providing confident control and stable front-end handling.

Widths (3 options) : 380/440 - 400/460 - 420/480(mm)

Lengths (5 options) : 80 - 90 - 100 - 110 - 120(mm)

Any width and length can be freely combined.

Compatible with the Rapier computer mount.

Weight (400/460-90 combo): ≈395g(excluding hardware)

Reach:69mm , Drop:118mm

 SEKA

sekabikes.com
ride@sekabikes.com

 @SEKA_BIKES

